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Objective: 

To study the oscillations of a string under an external driving force, as well as to observe 

experimentally the effects of a change in frequency on the amplitude. 

Description: 

A rod was fixed at one end of 

the table and on end of the cord 

was attached to it. The pulley 

was attached to the other end of 

the table and the end of the cord 

with the mass attached to it was 

passed over the pulley. A 

mechanical wave driver was 

placed on the table such that the cord either passed through it, or close enough to it for the 

wave-driver to induce oscillations of the cord. Special care was taken to ensure that the cord 

did not bend due to the mechanical wave driver. 

Theory: 

For the initial part of the experiment, we were required to place the mechanical wave driver 

so that the cord came in contact with it but was not passed through it. In this case, we 

assumed the vibrations occurred in the x-y plane alone (with the length of the string along the 

x axis). Since the cord was fixed at both ends, we assumed the process was analogous to a 

standing wave. Given a tension T and a mass per unit length of 𝜌 (and assuming there was no 

damping), we arrived at the following equation: 

𝜕2𝑦

𝜕𝑥2
−

𝜌

𝑇

𝜕2𝑦

𝜕𝑡2
= 0 

The most general solution to this equation is g(x±vt) where g is any function and v = √(𝑇/𝜌) 



This solution represents a wave travelling along the x axis with a speed of v. the boundary 

conditions of the experiment provide us with the equations required to solve for this setup. 

We can see that the oscillations resemble a sinusoidal wave and the boundary conditions limit 

the possibilities for the frequencies (to discrete values). Using this, we get the following 

equation for the normal modes: 

𝑦(𝑥, 𝑡) = 𝑓(𝑥) cos 𝜔𝑡 

Here 𝜔 is the angular frequency and 𝑡 the time. Substituting this in our earlier equation we 

get: 

𝑑2𝑓

𝑑𝑥2
+

𝜌

𝑇
𝜔2𝑓 = 0 

Solving this for our boundary conditions gives us: 

𝜆𝑛 =
2𝐿

𝑛
,     𝑛 = 1, 2, 3 …. 

From this we can derive that the linear frequency is: 

𝜈𝑛 =
𝑛

2𝐿
√

𝑇

𝜌
 

For a given sinusoidal wave the wave relationship 𝜆𝜈 = 𝑣 still applies. If g(x±vt) is 

substituted in place of f, we get: 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  √
𝑇

𝜌
 

This tells us that for a given string at a fixed value of T, the velocity of the oscillations is 

independent of the frequencies or the wavelengths of the oscillations. 

 

For the second part of this experiment we used strongly driven oscillations with the same 

boundary conditions as before. In this case the frequency of the oscillations is the same as the 



frequency supplied by the wave driver i.e. it is chosen by us. Assuming that f(x) was of the 

from 𝐴 sin (
2𝜋

𝜆
𝑥). From this we get the equation: 

𝑦(𝐿, 𝑡) = 𝐴 sin (
2𝜋

𝜆
) 𝐿 cos 𝜔𝑡 = 𝐵 cos 𝜔𝑡 

Here B is termed the driving amplitude and is determined by the experimenter. The unknown, 

A can then be found using: 

𝐴 =
𝐵

sin (
2𝜋
𝜆

𝐿)
 

Which means the amplitude of the wave reaches its minimum when the sine is at ±1 

The minimum response of the string in this case is obtained when the driver is at the point of 

maximum displacement i.e. the point where the cord passes through the mechanical wave 

driver is the anti-node of the wave. In this case we have: 

𝜆𝑛
𝑚𝑖𝑛 =

4𝐿

𝑛
        and         𝜈𝑛

𝑚𝑖𝑛 =
𝑛

4𝐿
√

𝑇

𝜌
        𝑤ℎ𝑒𝑟𝑒 𝑛 = 1, 3, 5 …. 

The maximum response is obtained when the value of the sine is 0 i.e. when the driving force 

acts at a node. This is evidently a contradiction in itself because if a point is being driven, it 

cannot be a node. It is however reasonable to assume that the maximum amplitude will be 

obtained at frequencies close to those derived from this assumption i.e.: 

𝜆𝑛
𝑚𝑎𝑥 ≅

2𝐿

𝑛
        and         𝜈𝑛

𝑚𝑎𝑥 ≅
𝑛

2𝐿
√

𝑇

𝜌
        𝑤ℎ𝑒𝑟𝑒 𝑛 = 1, 2, 3 …. 

This predicts that the change in string response with respect to the frequency will be a 

continuously changing function. 

Data and Analysis: 

Length of cord = 1.043m 

Mass of cord = 6g = 6× 10−3kg 



Linear Mass density of the cord = 5.75 × 10−3kg/m 

4.2 Frequency (of the second mode) against Tension 

 
Mass (×

𝟏𝟎−𝟑kg) 

Tension 

(N) 

Experimental 

Frequency (Hz) 

𝚫 Length (×

𝟏𝟎−𝟐m) 

Expected 

Frequency 

(Hz) 

1. 100 0.98 18 1.2 13.9 

2. 200 1.96 26 8.5 24.6 

3. 400 3.92 43 74.5 40.1 

 

The experimental frequencies come within an acceptable range of uncertainty of the expected 

frequencies. 

4.3 Mode Frequencies 

Mass = 200g 

Mode Nodes Frequency (Hz) 

1 0 13 

2 1 26 

3 2 39 

4 3 51 

 

These frequencies demonstrate a linear relationship to the mode as would be expected from 

our initial equation i.e. multiples of the first mode. 

4.4 Between Modes (between 13 Hz and 26 Hz) 

 Frequency (Hz) Amplitude (× 𝟏𝟎−𝟐m) 

1 13 0.75 

2 16 0.50 

3 21 0.15 

4 25 0.25 

5 26 0.50 

 



5 Wave Latency 

On setting the first string vibrating in its 1st mode and stopping the wave driver and then 

restarting the wave driver, the string took 1.35 seconds for the oscillations to build up. This 

could be due to the damping of the oscillations 

7.1 

The distance from the wave driver to the pulley was: 0.879m 

7.2 Resonances 

Mass = 200g 

Mode Nodes Frequency (Hz) 
Expected Frequency 

(Hz) 

1 0 13 12.5 

2 1 26 24.9 

3 2 39 37.4 

4 3 51 49.8 

This demonstrates the linear relationship of the frequency to the mode number as would be 

expected from our equation. Resonances do resemble the normal mode vibrations. The 

driving point should be negligibly close to the node. Since we see that the driving point 

moves significantly less than the maximum amplitude, and we do not see a node between the 

driving point and the first anti-node the node must be on the side of the driver away closer to 

the fixed rod. 

7.3 Anti-Resonances 

The three lowest anti-resonances were found each between two consecutive modes 

Mode 1 Mode 2 Frequency (Hz) Frequency (Hz) 

1 2 18 18.7 

2 3 30 31.2 

3 4 47 43.6 

Since the amplitudes of the anti-resonances are so small, it is impractical to detect the actual 

position of the anti-node. However, the driving point should be at the anti-node as proven by 



our theoretical hypothesis and corroborated by the observation that no point on the cord 

seems to move more than the driving point. 

7.4 Between Modes (13 Hz and 16 Hz) 

 Frequency (Hz) Amplitude (× 𝟏𝟎−𝟐m) 

1 13 1.80 

2 15 0.25 

3 19 0.10 

4 23 0.20 

5 26 1.20 

We notice that these results represent a pattern resembling the observations in part 4.4 but 

with larger amplitudes. The larger amplitude in this part of the experiment is because the 

oscillations are (comparatively) free in the first part and therefore have a smaller force acting 

on them. 

Original Experiment: 

For the original part of the experiment, we used the second normal mode of the cord as a 

control setup and added varying masses at the nodes to observe their effects 

 Mass (× 𝟏𝟎−𝟑kg) Amplitude (× 𝟏𝟎−𝟐m) 

1 0 1.00 

2 20 1.20 

3 50 1.40 

4 100 1.70 

 

From this we observed that the mass acts like a reflecting surface for the oscillations/energy 

i.e., when the mass was placed at a node, the amplitude on the side of the mass away from the 

wave driver decreased and the amplitude closer to the wave driver increased which would be 

consistent with the effects of superposition of wave oscillations. The effect becomes 

increasingly visible as the mass is increased and the amplitude increases even more. This also 

demonstrates conservation of momentum where, to move a larger mass by the same 



(negligibly small) distance, a much larger change in momentum is required. This change in 

momentum shows up as the hypothetical wave that is superimposed on the initial wave to 

create a standing wave of larger amplitude. 

Error Analysis: 

A large part of the uncertainties that we see in this experiment can be attributed to the fact 

that we do not correct for damping. Additionally, the amplitudes in many parts of the 

experiment small enough to cause significant uncertainties in the final values. 


