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Objective:
To study the oscillations of a string under an external driving force, as well as to observe
experimentally the effects of a change in frequency on the amplitude.
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placed on the table such that the cord either passed through it, or close enough to it for the
wave-driver to induce oscillations of the cord. Special care was taken to ensure that the cord
did not bend due to the mechanical wave driver.

Theory:

For the initial part of the experiment, we were required to place the mechanical wave driver
so that the cord came in contact with it but was not passed through it. In this case, we
assumed the vibrations occurred in the x-y plane alone (with the length of the string along the
x axis). Since the cord was fixed at both ends, we assumed the process was analogous to a
standing wave. Given a tension T and a mass per unit length of p (and assuming there was no

damping), we arrived at the following equation:

The most general solution to this equation is g(x+vt) where g is any function and v = V(T /p)



This solution represents a wave travelling along the x axis with a speed of v. the boundary
conditions of the experiment provide us with the equations required to solve for this setup.
We can see that the oscillations resemble a sinusoidal wave and the boundary conditions limit
the possibilities for the frequencies (to discrete values). Using this, we get the following
equation for the normal modes:

y(x,t) = f(x) cos wt
Here w is the angular frequency and t the time. Substituting this in our earlier equation we

get:

Solving this for our boundary conditions gives us:
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From this we can derive that the linear frequency is:

For a given sinusoidal wave the wave relationship Av = v still applies. If g(xxvt) is
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This tells us that for a given string at a fixed value of T, the velocity of the oscillations is

substituted in place of f, we get:

independent of the frequencies or the wavelengths of the oscillations.

For the second part of this experiment we used strongly driven oscillations with the same

boundary conditions as before. In this case the frequency of the oscillations is the same as the



frequency supplied by the wave driver i.e. it is chosen by us. Assuming that f(x) was of the

from A sin (27” x). From this we get the equation:
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y(L,t) = Asin (7) L cos wt = B cos wt

Here B is termed the driving amplitude and is determined by the experimenter. The unknown,
A can then be found using:
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Which means the amplitude of the wave reaches its minimum when the sine is at +1
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The minimum response of the string in this case is obtained when the driver is at the point of
maximum displacement i.e. the point where the cord passes through the mechanical wave

driver is the anti-node of the wave. In this case we have:
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The maximum response is obtained when the value of the sine is 0 i.e. when the driving force
acts at a node. This is evidently a contradiction in itself because if a point is being driven, it

cannot be a node. It is however reasonable to assume that the maximum amplitude will be

obtained at frequencies close to those derived from this assumption i.e.:
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This predicts that the change in string response with respect to the frequency will be a
continuously changing function.

Data and Analysis:

Length of cord = 1.043m

Mass of cord = 6g = 6x 10~3kg



Linear Mass density of the cord = 5.75 x 10~3kg/m

4.2 Frequency (of the second mode) against Tension

_ _ A Length (X Expected
Mass (X Tension Experimental
1072m) Frequency
1073kg) (N) Frequency (Hz)
(Hz)
1. 100 0.98 18 1.2 13.9
2. 200 1.96 26 8.5 24.6
3. 400 3.92 43 74.5 40.1

The experimental frequencies come within an acceptable range of uncertainty of the expected
frequencies.

4.3 Mode Frequencies

Mass = 200g
Mode Nodes Frequency (Hz)
1 0 13
2 1 26
3 2 39
4 3 51

These frequencies demonstrate a linear relationship to the mode as would be expected from
our initial equation i.e. multiples of the first mode.

4.4 Between Modes (between 13 Hz and 26 Hz)

Frequency (Hz) Amplitude (x 1072m)
1 13 0.75
2 16 0.50
3 21 0.15
4 25 0.25
5 26 0.50




5 Wave Latency

On setting the first string vibrating in its 1 mode and stopping the wave driver and then
restarting the wave driver, the string took 1.35 seconds for the oscillations to build up. This
could be due to the damping of the oscillations

7.1

The distance from the wave driver to the pulley was: 0.879m

7.2 Resonances

Mass = 200g
Expected Frequency
Mode Nodes Frequency (Hz)

(H2)
1 0 13 12.5
2 1 26 24.9
3 2 39 374
4 3 51 49.8

This demonstrates the linear relationship of the frequency to the mode number as would be
expected from our equation. Resonances do resemble the normal mode vibrations. The
driving point should be negligibly close to the node. Since we see that the driving point
moves significantly less than the maximum amplitude, and we do not see a node between the
driving point and the first anti-node the node must be on the side of the driver away closer to
the fixed rod.

7.3 Anti-Resonances

The three lowest anti-resonances were found each between two consecutive modes

Mode 1 Mode 2 Frequency (Hz) Frequency (Hz)
1 2 18 18.7
2 3 30 31.2
3 4 47 43.6

Since the amplitudes of the anti-resonances are so small, it is impractical to detect the actual

position of the anti-node. However, the driving point should be at the anti-node as proven by



our theoretical hypothesis and corroborated by the observation that no point on the cord
seems to move more than the driving point.

7.4 Between Modes (13 Hz and 16 Hz)

Frequency (Hz) Amplitude (x 1072m)
1 13 1.80
2 15 0.25
3 19 0.10
4 23 0.20
5 26 1.20

We notice that these results represent a pattern resembling the observations in part 4.4 but
with larger amplitudes. The larger amplitude in this part of the experiment is because the
oscillations are (comparatively) free in the first part and therefore have a smaller force acting
on them.

Original Experiment:

For the original part of the experiment, we used the second normal mode of the cord as a

control setup and added varying masses at the nodes to observe their effects

Mass (x 10~3kg) Amplitude (x 1072m)
1 0 1.00
2 20 1.20
3 50 1.40
4 100 1.70

From this we observed that the mass acts like a reflecting surface for the oscillations/energy
i.e., when the mass was placed at a node, the amplitude on the side of the mass away from the
wave driver decreased and the amplitude closer to the wave driver increased which would be
consistent with the effects of superposition of wave oscillations. The effect becomes
increasingly visible as the mass is increased and the amplitude increases even more. This also

demonstrates conservation of momentum where, to move a larger mass by the same



(negligibly small) distance, a much larger change in momentum is required. This change in
momentum shows up as the hypothetical wave that is superimposed on the initial wave to
create a standing wave of larger amplitude.

Error Analysis:

A large part of the uncertainties that we see in this experiment can be attributed to the fact
that we do not correct for damping. Additionally, the amplitudes in many parts of the

experiment small enough to cause significant uncertainties in the final values.



